Approximate Message Passing with Nearest Neighbor Sparsity Pattern Learning

نویسندگان

  • Xiangming Meng
  • Sheng Wu
  • Linling Kuang
  • Defeng Huang
  • Jianhua Lu
چکیده

We consider the problem of recovering clustered sparse signals with no prior knowledge of the sparsity pattern. Beyond simple sparsity, signals of interest often exhibits an underlying sparsity pattern which, if leveraged, can improve the reconstruction performance. However, the sparsity pattern is usually unknown a priori. Inspired by the idea of k-nearest neighbor (k-NN) algorithm, we propose an efficient algorithm termed approximate message passing with nearest neighbor sparsity pattern learning (AMP-NNSPL), which learns the sparsity pattern adaptively. AMP-NNSPL specifies a flexible spike and slab prior on the unknown signal and, after each AMP iteration, sets the sparse ratios as the average of the nearest neighbor estimates via expectation maximization (EM). Experimental results on both synthetic and real data demonstrate the superiority of our proposed algorithm both in terms of reconstruction performance and computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Algorithms for Nearest Neighbor Search Problems in High Dimensions

The nearest neighbor search problem in general dimensions finds application in computational geometry, computational statistics, pattern recognition, and machine learning. Although there is a significant body of work on theory and algorithms, surprisingly little work has been done on algorithms for high-end computing platforms and no open source library exists that can scale efficiently to thou...

متن کامل

On the Difficulty of Nearest Neighbor Search

Fast approximate nearest neighbor(NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This...

متن کامل

Sparsity Pattern Recovery in Compressed Sensing

Sparsity Pattern Recovery in Compressed Sensing by Galen Reeves Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences University of California, Berkeley Professor Michael Gastpar, Chair The problem of recovering sparse signals from a limited number of measurements is now ubiquitous in signal processing, statistics, and machine learning. A natural question of fundame...

متن کامل

EFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION

In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...

متن کامل

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES A General Framework for Approximate Nearest Subspace Search

Subspaces offer convenient means of representing information in many Pattern Recognition, Machine Vision, and Statistical Learning applications. Contrary to the growing popularity of subspace representations, the problem of efficiently searching through large subspace databases has received little attention in the past. In this paper we present a general solution to the Approximate Nearest Subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.00543  شماره 

صفحات  -

تاریخ انتشار 2016